Water intended for use as an ingredient in the production of beer (brewing liquor) or other foods
The cadmium content is determined by employing a flameless method which utilizes graphite furnace atomic absorption spectrophotometry. This technique is suitable for determining the cadmium content of water with very little cadmium contamination. Any matrix effects can be eliminated by using the standard additions calibration technique.
An aliquot of the sample is dosed into a graphite tube and is subsequently subjected to a program comprising a three-step temperature regime through electrothermic resistance heating. As the temperature increases in each step, the consecutive steps include drying, matrix pyrolysis (incineration) and thermal dissociation into free atoms (atomization). These can be carried out separately. During the analysis, the graphite tube is under an inert gas atmosphere (argon).
Also important for graphite furnace AAS is background correction, which can be achieved using a continuum radiation source (deuterium) or through the Zeemann effect. Background correction with the Zeemann effect is used for particularly difficult sample matrices.
A hollow-cathode lamp or an electrodeless discharge lamp, which contains the relevant element in gaseous state, usually serves as the light source.
The method is suitable for the determination of water vapor volatile aroma compounds in beer.
Volatile aroma compounds are driven out of the sample through steam distillation. The ethanolic distillate is saturated with NaCl. Potassium hydrogen sulfite is added to separate carbonyl groups that might interfere with the analysis. The extraction of the aroma compounds is performed by shaking out with dichloromethane and the phases separated by centrifuging.
Determination of the fermentation cellar yield in order to monitor brewhouse operations
Wort from the midpoint of chilling/pitching wort
The fermentation cellar yield is calculated using the value determined for the amount of extract contained in a batch of wort relative to the amount of extract present in the raw materials used to produce the wort.
The gelatinization temperature can be determined using a rotary viscometer (e.g., Amylograph or Viscograph, Brabender GmbH & Co. KG, Germany [4] or a Rapid-Visco-Analyser, RVA, Perten Instruments, a PerkinElmer Company, USA [8]).
A suspension consisting of a finely ground sample and water is produced, whose precise mixing ratio should correspond to the analysis protocol for the adjunct in question. However, since for many cereals and pseudocereals no official analysis protocol exists, the initial weight for the adjuncts listed in table 2 has been determined empirically [3].
Once the suspension is prepared it is attempered according to a pre-programmed temperature/time program, and the viscosity is determined on a continuous basis by means of a rotor and a rotary torque measurement (fig. 1). When gelatinization begins, an increase in the viscosity is registered, and the corresponding sample temperature is defined as the gelatinization temperature. The standard evaluation criterion (PT) is a viscosity increase of at least 24 cP (≙ mPas) within six seconds.
Barley intended for the production of malt is to be evaluated on the basis of the characteristics described below.
visual assessment
This method describes how to determine whether kernels are cracked as part of the visual and manual inspection of a lot of barley.
Barley intended for the production of malt is to be evaluated on the basis of the characteristics described below.
Visual assessment