Water intended for use as an ingredient in the production of beer (brewing liquor) or other foods
The nickel content is determined by employing a flameless method which utilizes graphite furnace atomic absorption spectrophotometry. This technique is suitable for determining the nickel content of water with very little nickel contamination. Any matrix effects can be eliminated by using the standard additions calibration technique.
An aliquot of the sample is dosed into a graphite tube and is subsequently subjected to a program comprising a three-step temperature regime through electrothermic resistance heating. As the temperature increases in each step, the consecutive steps include drying, matrix pyrolysis (incineration) and thermal dissociation into free atoms (atomization). These can be carried out separately. During the analysis, the graphite tube is under an inert gas atmosphere (argon).
Also important for graphite furnace AAS is background correction, which can be achieved using a continuum radiation source (deuterium) or through the Zeemann effect. Background correction with the Zeemann effect is used for particularly difficult sample matrices.
A hollow-cathode lamp usually serves as the light source.
Determination of the nickel content by means of spectrophotometry
Suitable for all types of wort, beer and beer-based beverages
After digestion of the sample, a complex is formed with dimethylglyoxime which is then measured photometrically.

Determination of the amount of cold break material in the pitching wort
Cast-out wort, wort from the midpoint of chilling/pitching wort (without yeast)
The hot break material (trub) and any hop particles which may be present in the wort, must first be removed. After the wort has been cooled to 2 °C, it is filtered through a glass fiber filter. The residue remaining on the filter is dried and then weighed.
Cold break material or cold trub refers to all material that settles out in the process of chilling wort after separation of the hot trub or hot break material. Cold trub can be filtered out of the wort and primarily consists of proteins (48–57 %), tannins (11–26 %) and carbohydrates (20–36 %). The amount of cold break material in wort depends on the quality and composition of the raw materials, brewhouse equipment and wort handling. In academic and professional circles, opinions regarding the significance of cold break material for downstream processes and for the quality of the finished beer are strongly divided [1, 2, 5]. Under certain circumstances, the quantity of cold break material in wort may exceed 250 mg/l, especially where accelerated fermentation is practiced. Ultimately, this can detract from the flavor of the finished beer [3]. Breweries, where removal of the cold break material has been practiced successfully, determine the quantity of cold break in their pitching wort at regular intervals, in order to evaluate the efficacy of their separation equipment.
Determination of the fermentation cellar yield in order to monitor brewhouse operations
Wort from the midpoint of chilling/pitching wort
The fermentation cellar yield is calculated using the value determined for the amount of extract contained in a batch of wort relative to the amount of extract present in the raw materials used to produce the wort.
The sample describes how to collect samples of adjuncts.
The moisture content of adjuncts is determined through the loss in mass during a standardized drying process, in which ground malt is dried at a defined temperature within a specified time in an electrically heated drying oven.
The moisture content is determined through the difference in the weight of the adjuncts prior to and after drying.
For samples with a moisture content greater than 17 % (for corn over 15 %), the sample has to be dried prior to conducting the analysis.