Determination of copper content in beer
This method is also suitable for dark and turbid beers. The turbidity particles must be evenly distributed before sampling.
This method is based on the formation of a yellowish-brown, (insoluble in aqueous medium) copper (II) chelate with zinc benzyl dithiocarbamate (ZDBT), a compound that may be extracted with trichloroethane.
Boiler feed water for use in the production of beer and other foods
Copper forms a complex with sodium diethyldithiocarbamate with a maximum absorption at 436 nm.
If the copper content is high, turbidity will result. In such cases, the water sample must be diluted. The method is suitable for water with a copper content up to 1 mg/l. An extraction must be performed in order to determine extremely low concentrations of copper.
Determination of the copper content in beer
This method is suitable only for clear, pale beers
The absorbance of the color complex that copper forms with diethanolamine carbon disulfide is measured.
Barley intended for the production of malt is evaluated with regard to pre-germination.
Visible pre-germination is evident at the rootlet and is therefore grounds for rejecting a barley lot. However, after the barley is cleaned and the rootlets are removed, the so-called “hidden pre-germination” can be made visible using the staining methods described below.
Kernels suspected of having pre-germinated are boiled for ½−1 min in a 20 % solution of copper sulfate, allowed to remain for 30 min in the hot solution and are subsequently rinsed with water. The acrospire is stained green, making it clearly visible.
Suitable for analysis of all (laboratory) wort samples
Copper in wort is measured using AAS by directly aspirating the diluted sample into an air-acetylene flame or by electrothermal atomization; the measurement is made at 324.7 nm.
The cations in beer and wort are determined with this analysis.
This method is suitable for both wort and beer.
Inductively coupled plasma optical emission spectroscopy (ICP-OES) is a fast and reliable method for the laboratory analysis of metals. Inductively coupled plasma (ICP), a high frequency field of ionized gas, serves as a medium for atomizing and exciting the substances found in samples. Liquid, dissolved or aerosol samples are injected into the ionized gas stream. In emission spectroscopy, ICP can be used in conjunction with a number of optical and electronic systems either simultaneously or sequentially in multi-element spectrometers. In the plasma, the atoms and ions are excited to a higher energy state bringing about the emission of electromagnetic radiation (light), primarily in the ultraviolet and visible region of the spectrum. Metals ordinarily occur as ions in the temperature range typical for ICP of 6000 to 10000 K; however, non-metals and metalloids are only partially ionized.
ICP-OES operates within a very wide range. This usually encompasses six orders of magnitude in concentrations smaller than μg/l up to g/l, depending upon the element and the concentrations used for the set of analysis data. With ICP-OES, beer and wort can also be analyzed without prior processing of the samples, in contrast to AAS. Methods for determining the following in beer and wort will be described below: Al, B, Ba, Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, P, Si, Sr, Sn and Zn.